New Energy-Saving Technology

Energy Efficient Hydraulics and Pneumatics Conference

28 November 2012

Energy Efficiency – Lots of Opportunity!

3 layers for machine efficiency improvements

Integrated Subsystems

Subsystems

Components

Component Technology

Modern Piston Pumps/Motors

Efficiency Elements

- Major update of '80s technology driven by increasing customer focus on efficiency and controllability
- Parasitic loss reductions in charge circuit, controls, and kits
- Enabler for efficient subsystem solutions thru electronic interface, onboard electronics

45° Rotating Kit Technology

 Critical Enabler for Hydro-Mechanical Transmission (HMT) and Hydraulic Hybrid Systems

- Designed for Best Efficiency
 - Lamellar piston seal rings low leakage
 - Dry case operation low torque loss
 - Large angle (45 deg) increased torque without increased leakage

Digital Displacement® Pumps and Motors

- Digital Displacement® Technology first invented in early '90s at Artemis Intelligent Power
- Precise digital control of each pump displacement chambers individually
- Very low parasitic losses
- Manifolding of individual chamber control enables new energy-efficient sub-system architectures

Digital Displacement® Pump

Power Loss Reduction Example

- Example: Benefit from low losses
 - At 2000 rpm
 - At 20% displacement
 - At 350 bar (5075 psi)
 - A 100cc pump
 - Consumes ~17 kW (23HP) less than a traditional swashplate pump

Systems Technology

Integrated Digital Subsystems

Hydraulic Power on Demand

- Each service can be at different flow and pressure (independent)
- Fast response total installed pump capacity can be dynamically allocated (combined) without interruption
- "Hydraulic Power on Demand"

Hydraulics-Engine Integration

Best-Point Control

What is Best-Point Control?

 Management of the hydrostatic drive train incl. engine speed command to achieve the "Best" overall efficiency

Benefits

- Fuel consumption reduction
- Emissions reduction
- Noise reduction
- Operating improvement

"The driver still commands the vehicle movements, but BPC controls the engine speed and drive train ratio"

Hydraulics-Engine Integration

Best-Point Work Function System

Best-Point Work Function

Improved Machine Efficiency Thru Intelligent Control

Benefits: fuel reduction (15-20%) with no compromise in productivity potential engine downsizing by improved limit management

2-Motor Transmission (2MT)

→ Design & Components

- 1 pump & 2 motors operate in two ranges:
 - LOW: 2 active Motors
 - HIGH: 1 active Motor (M1)
- Motor M1 for high travel speed
- Motor M2 for high tractive effort
- Mode shift w/o gap in tractive effort for seamless acceleration
- Motor M2 de-clutched:
 - Reduced power loss in the complete system
 - Motor M2 over-speed protection
 - Increased final drive ratio i₂ for motor M2 possible
 - Low losses in open clutch required

Summary

- Off-highway machines can be best optimized for energy efficiency, without losing performance, thru
 - Modern hydraulic <u>components</u> with minimal parasitic losses across the operational cycle
 - Subsystems that only deliver hydraulic power when you need it
 - Integrated Subsystems that dynamically adjust all power producing and transmitting components to best-point system operating positions

