

Energy Efficient Hydraulics and Pneumatics Conference

Cartridge Valve and Manifold Technologies

A Components Approach to Improved Energy Efficiency

How Can Components Lead to Greater Energy Efficiency?

- Higher Capacity
- Energy Saving Functions
- Optimized Manifold Assemblies

Higher Capacity

 Lower pressure drop for a given flow rate in the same size, or equivalently sized, valve

Higher Capacity: Sun Cavity

- Unique to Sun Hydraulics
- Differs from Industry Common Cavities
 - Centrally located threads
 - Allowance for nose support
 - Defined port usage

How Does the Sun Cavity Improve Efficiency?

- Larger Working Port Diameters
 - Compared to equivalently sized industry common cavities
 - Lower cavity interconnection velocities
 - Lower pressure drop ≈ Improved efficiency

Screw-in Cartridge Cavity Comparison

Working Port Capacity Differences

SAE and ISO versions are driven by the threaded port, limiting the size of working port connections

SUN T-11A Cavity

SUN cavity is specifically designed to optimize port capacity, allowing larger port connections

Higher Capacity in Single Element Blocks

Industry 'Common' 3-Port Body Sun 3-Port Body Port 3 SAE-6 Port 3 SAE-6 Port 2 Port 2 **SAE-10 SAE-10** .63"/ 15,9 mm .28"/ 7,1 mm **Working Port Working Port** Diameter **Diameter 5X More** Port 1 Port 1 **Working Flow SAE-10 SAE-10 Area Than Industry** Common **Body**

Lower Cavity Interconnection Velocities

.16" / 3,96 mm DIA Passage

.24" / 6,35 mm DIA Passage

.36" / 9,25 mm DIA Passage

8

Flow Rate	.16" (3,96 mm) DIA	.24" (6,35 mm) DIA	.36" (9, 25 mm) DIA
5 gpm (20 L/min.)	80 ft/sec (24.4 m/sec)	35 ft/sec (10.7 m/sec)	16 ft/sec (4.9 m/sec)
10 gpm (40 L/min.)	160 ft/sec (48.8 m/sec)	70 ft/sec (21.4 m/sec)	32 ft/sec (9.8 m/sec)
15 gpm (60 L/min.)	240 ft/sec (73.2 m/sec)	105 ft/sec (32 m/sec)	47 ft/sec (14.3 m/sec)

Sun Cavity Recap

Features

- Larger working port diameters
- Equivalent sizes to industry common cavities

Benefits

- Lower interconnection velocities result in less energy loss
- Greater capacity than equivalently sized industry common cavities

Higher Capacity: Series 4+

- High Capacity Versions of Existing Valves
 - Check and non-modulating logic valves
 - 50-80% more capacity
- Alternative to DIN 25/32 Valves
 - Similar capacity
 - Smaller footprint

How Were the Efficiency Gains Achieved?

- Computational Fluid Dynamics Modeling
 - Computer simulation of valve performance
 - Identified flow restrictions
 - Quantified potential improvements
- Hydraulic Testing for Verification

CFD Findings – Orientation Sensitivity

Original orientation

Rotated 22.5 degrees

- Inconsistent performance
 - Alters pressure drop
- Affected by flow rate
 - Greater sensitivity at higher flows
- Cavity can be restrictive
 - Increases at high flows (200+ gpm)
 - Must be considered for optimization

CFD Findings – Hydraulic Eddy

- Hydraulic restriction of flow
- Inlet geometry critical
- Performance affected by upstream and down stream constraints

Results – Critical Geometry

© 2012 Sun Hydraulics Corporation

14

Results – Hydraulic Validation

Pressure Differential vs. Flow

67% improvement over standard valve ≈ Savings of 28 hp

Series 4+ Recap

Features

- Streamlined cartridge
- Enlarged cavity annulus
- Enlarged port connections

 Shares form and function with existing Sun valves

Benefits

- 25-40% lower pressure drop with either cartridge or cavity
- 50-80% lower pressure drop with cartridge and cavity
- Can replace existing applications without circuit redesign

Energy Saving Functions

 Interchangeable, industry accepted functions performed in new ways that provide significant energy savings

18

Energy Saving Functions: LoadMatch™ Counterbalance Valves

What is a Counterbalance Valve?

- Direct Acting Relief Valve
- Pilot Assist
 - Reduces effective relief setting
- Integrated Reverse Free Flow Check

What Does a Counterbalance Valve Do?

- Load Control
 - Prevents unintended motion
 - Requires positive signal to open
 - Modulates opening for smooth control
- Provides Relief Protection

Counterbalance Valves Consume Energy

- Create a Variable Resistance to Flow
 - Energy sacrificed for control/stability
- Pilot Assist Reduces Resistance to Flow

$$-\frac{Pilot\ Pressure}{To\ Open} = \frac{Valve\ Setting-Load\ Pressure}{Pilot\ Ratio}$$

- High Pilot Ratios Increase Efficiency
- High Pilot Ratios Decrease Stability

What is a LoadMatch™ Counterbalance Valve?

- Counterbalance Valve + New Control
 - Improved modulation
 - Non-adjustable
 - Fixed relief setting
 - Dynamic load holding setting

What Does a LoadMatch™ Valve Do?

- Counterbalance function
 - Full flow relief protection
 - Excellent modulating characteristics
 - Stable load control
- Low Pilot Pressure Requirements
- Pilot Pressure Independent of Load

LoadMatch™ Cartridge Model MBEP

Simplified Symbol

Detailed Functional Symbol

LoadMatch [™] Advantages Dynamic Load Holding Setting

Design Features

- Self sets to hold load
- Set point is higher than load pressure by a fixed differential
- Low, consistent pilot pressure

Benefits

- Safe Load Holding
- Good control and stability

- Predictable Metering
- Energy Savings

26

LoadMatch™ Function

Performance Comparisons

Pilot Pressure Requirements 4000 psi Valve setting

65% lower pilot pressure over standard valves at 1000 psi load pressure

Where Does LoadMatch ™ Apply?

- Off Road Tele-handlers/Forklifts
- Winches
- Cranes
- Battery Operated Equipment

LoadMatch ™ Recap

Features

- Dynamic Load Holding Setting
- Lower pilot pressures
- Consistent pilot pressures
- Includes pressure relief

 Shares cavity with other Sun counterbalance valves

Benefits

- Enhanced performance over standard counterbalance
- Reduces energy consumption
- Extends run-time of battery powered machinery
- Can replace existing Sun counterbalance applications

Optimized Manifold Assemblies

 A hydraulic circuit integrated into a single block to minimize pressure losses between valves

Line Mounted Valves Reduce Circuit Efficiency

Motor Control Circuit – components line mounted

- Sources of Pressure Loss
 - Fittings
 - Long and undersized hoses or tubing

How Can Manifold Assemblies Improve Efficiency?

Minimize Pressure Losses

- Fewer fittings
- Larger diameter connections
- No long hoses or tubing

Motor Control Circuit – components manifold mounted

Optimized Manifold Assemblies: 5-Axis Machining

- 3-Axis
 - X, Y, and Z axes
- 5-Axis
 - X, Y, and Z axes
 - Plus A (rotate) and B (tilt)
 - Enables use of compound angles

5-Axis vs. 3-Axis Efficiency Advantages

- Improved Flow Paths
 - Optimized cavity connections
 - Fewer drillings to connect cavities
 - Less restrictive drilling connections
 - Angles greater than 90°

Additional 5-Axis Advantages

- Reduced Package Size
 - Easier packaging
 - Weight savings for mobile applications
- Fewer Construction Holes
 - Potential leak points

Manifold Design Comparison

3-Axis Straight Hole Drilling

Size: 125 cubic inches

5 x **5** x **5** inches

No. of Plugs: 17

5-Axis Compound Angle Drilling

Size: **64** cubic inches **4** x **4** x **4** inches

No. of Plugs: 0

Schematic for both designs

36

Designing 5-Axis Manifolds for Energy Savings

- 5-Axis Designs Typically Reduce Block Size
 - Package size may increase when designing for optimum efficiency
- For Flow Path Efficiency
 - Minimize acute drilling connections
 - Maximize connection diameters
 - Optimize placement of components

5-Axis Recap

Features

- Compound angle drillings
- Connection angles greater than 90°
- Reduced block size
- Fewer construction holes

Benefits

- Improved flow paths
- Optimized cavity hits
- Lower pressure drop between installed components
- Less mass for mobile applications
- Fewer leak points

Considerations About Energy Savings

- Your Savings May Vary
 - Energy efficient components do not guarantee an efficient circuit
 - Simple substitution may not produce savings
 - Savings difficult to predict
 - Consider complete circuit with efficiency in mind

Bringing It All Together

- Higher Capacities
 - Reduce component pressure losses
- Energy Saving Functions
 - Use less power for critical functions
- Optimized Manifold Assemblies
 - Minimizes circuit losses

Bringing It All Together

- Choose Components with Efficiency in Mind
 - Sun Cavities allow large connections
 - Series 4+ valves operate at low pressure drop
 - LoadMatch TM valves reduce energy requirements
 - 5-Axis manifolds leverage efficient circuit design and packaging
- Combine to Optimize System Efficiency

Questions?