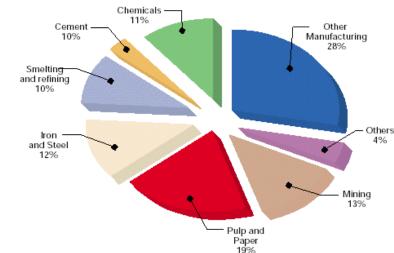

Estimating the Impact (Energy, Emission's and Economics) of the U.S. Fluid Power Industry

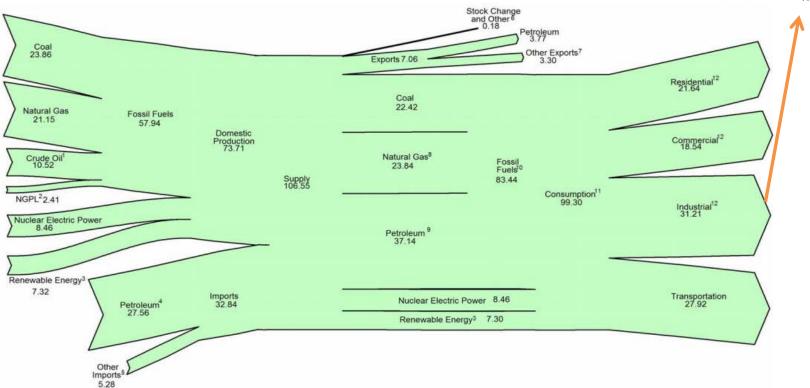
Lonnie Love, Ph.D.

Oak Ridge National Lab

Eric Lanke and Pete Alles

National Fluid Power Association

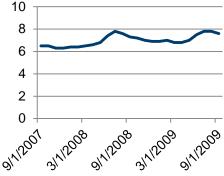

Outline

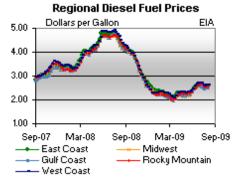

- Fluid Power Study
 - How much energy does US consume?
 - Where does it go?
 - How much is devoted to fluid power?
 - What is the impact of energy efficient fluid power
- Discuss U.S. interest in manufacturing investment
 - Many recent DoD and DOE programs in manufacturing
- How do we position fluid power industry for sustained support?
 - Leverage recent work on Energy study and CCEFP
 - Capitalize on existing focus on manufacturing
 - Discuss how to get agencies (DOE, NIST, Dept. of Commerce) to engage fluid power industry
 - ORNL is interested in helping facilitate this interaction
 - ORNL has discussed fluid power study with DOE EERE
 - DOE's EERE has stated an interest in signing an MOU with NFPA

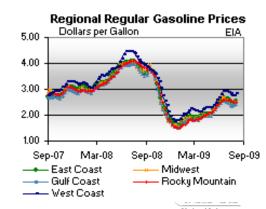
Energy Flow

- U.S. consumes approximately 100 Quads/year (1 Quad = 1e¹⁵ Btu, 1 Btu = 778 ft-lb)
 - 69% is of our energy is produced domestically
 - 80% is of our energy is based on fossil fuels
- Goes to 4 main markets: residential, commercial, industrial and transportation
- Basic question: How much energy (and \$) is spent on fluid power?

Impact: Cost of Energy


How much does a Quad cost?


- **Electricity**
 - U.S. industrial average cost is \$.0678/kW-hr (April 09)¹
 - Equivalent to \$19.87B/Quad (3412 Btu/kW-hr)
- Gasoline
 - 2009 average cost \$2.36/gal²
 - Equivalent to \$20.45B/Quad (115,400 Btu/gal)
- Diesel
 - 2009 average cost \$2.46/gal²
 - Equivalent to \$19.87B/Quad (128,700 Btu/gal)


How much energy is devoted to fluid power?

Fuel graphs: http://tonto.eia.doe.gov/

Ind. Elec. Rate

¹ http://www.eia.doe.gov/cneaf/electricity/epm/table5 6 a.html# ftn1

² http://www.eia.doe.gov/steo

2010 DOE/ORNL/NFPA Energy Study

- In 2010, DOE ITP (now AMO) contracted ORNL to conduct a fluid power study
 - Objective was establish a ballpark estimate on market size, energy consumed, emissions generated and existing efficiency levels
 - ORNL teamed with the NFPA and 31 industrial partners spanning all major application areas
 - Industrial partners provided proprietary data on systems, energy consumption, duty cycles and efficiencies.

POCLAIN HYDRAULICS

SIEMENS

DOE Fluid Power Study

- Segmented industry into 4 areas
 - Mobile Hydraulics, Industrial Hydraulics, Pneumatics, Aerospace

• Results:

- Industry is huge manufacturer as well as supporter of manufacturing
 - >\$17.7B in component sales, > \$226B in system sales
- 1.9 to 2.9 Quads of energy (2% to 3% of U.S. energy is consumed driving fluid powered components
 - Mobile Hydraulics: Between 0.4 and 1.2 Quads/yr producing between 26 and 92 MMT of CO2
 - Industrial hydraulics projected at 1.1 Quads/year (but weakest data, highest efficiency)
 - Pneumatic equipment consumed approximately 0.5 Quads
 - Aerospace 0.02 Quads due to transportation of embedded equipment
- Average efficiency < 21%
- These estimates are huge which led to much scrutiny at DOE.
 - Main objective was to provide order of magnitude estimate
 - Is it ~0.1 Quad, 1 Quad, 10 Quad???
 - Our secondary objective was to educate DOE and other agencies

What is potential impact of efficiency?

Ballpark estimate of impact:

- Case studies show much of this energy is recoverable
 - Hybrid hydraulics, displacement controls, regeneration, weight reduction, new fluids
- 5% increase in efficiency (21% to 26%) from Best Practices = 0.4 Quads of potential energy savings (i.e. \$8B/year in energy savings)
- 15% increase in efficiency (21% to 36%) from R&D = 0.8 Quads of potential energy savings (i.e. \$16B/year in energy savings)

$$W = \eta_1 E_1 = \eta_2 E_2$$
$$\Delta E = E_1 - E_2$$
$$= E_1 \left(1 - \frac{\eta_1}{\eta_2} \right)$$

for the U.S. Department of Energy

So what's next?

Manufacturing initiative development

January: Plan to Win the Future by Investing in Advanced Manufacturing Technologies

June: Launch of Advanced Manufacturing Partnership January:
Blueprint to
Support U.S.
Manufacturing
Jobs

March:
Announce National
Network for
Manufacturing
Innovation (NMMI)

2011

2012

May:
DARPA BAA,
Open
Manufacturing

June:
DOE FOA,
Innovative
Manufacturing
Initiative

Feb:
DOE announces first
Manufacturing
Demonstration Facility
at ORNL (AM/CF)

Aug: Commerce Dept. announces first NNMI in Youngstown (\$69M over 3 years)

Fluid power: Foundational technology for manufacturing (i.e. components manufactured in U.S., components and systems used for U.S. manufacturing)

NNMI Objective

- The Obama Administration has proposed \$1B of discretionary funding for 15 National Networks for Manufacturing Innovation
 - Lead agency is Office of Secretary of Defense (OSD), Manufacturing and Industrial Base Policy. However, this is a multi-agency program (DOE, NASA, NSF, NIST and Dept. of Commerce)

Objective is to

- Accelerate innovation by investing in industrially relevant manufacturing technologies
- Bridge the gap between the laboratory and product development (TRL 4 to TRL 7)
- Provide companies access to cutting edge capabilities and equipment
- Accelerate innovation in industrial relevant manufacturing technologies with broad applications
- Serve as a network for sharing of knowledge and best practices
- Conduct applied R&D and development projects (user facilities) to reduce the cost and risk of commercializing new technologies
- Conduct education and workforce development at all levels (K-12 and community colleges)

Example Focus Areas

Manufacturing Process

- Additive manufacturing for low-cost, low-volume production using digital designs
- Shipping electrons rather than parts

Advanced Materials

 Lightweight materials, low-cost carbon fiber that will improve fuel efficiency and performance in next generation auto, aircraft, ships and trains

Enabling Technology

 Development of low-cost sensors (wireless) into manufacturing processes to improve productivity, optimize supply chain, reduce waste energy, water and material.

Industry

Improved biomanufacturing processes to enhance safety, quality and consistency
of bioproducts such as pharmaceuticals or chemicals, rapid on-line sensing for
process optimization, control and cost-effective production

Pilot Institute

- Competition for pilot institute targeted at additive manufacturing
- Awarded to the National Center for Defense Manufacturing and Machining (NCDMM)
 - Approximately 13 teams competed (i.e. need to have a strong team).
 - NCDMM team consisted of 40 companies, 9 research universities, 5 community colleges and 11 non-profit organizations
 - Located in Western Pennsylvania, Northeast Ohio and Northern West Virginia.
 - Focus on regional hubs
 - The National Additive Manufacturing Innovation Institute (NAMII) will receive \$30M in initial federal funding with an additional \$39M in cost share form industry and the states.
 - Industry cost share is their providing in-kind work (i.e. they have skin in the game), equipment or funds in
 - NAMII announced first round of projects at DMC in Orlando on 11/27/12

Why Fluid Power NNMI?

Heavy in manufacturing

- Fluid power is a baseline industry in manufacturing
- Innovations directly address "broad application" requirement

Can leverage other NNMI's

Additive manufacturing, carbon fiber, sensing...

High impact

Innovations in design and control impact broad spectrum of applications

Many elements already exist

- K-12 activities with education, many companies (Bimba) active with FIRST
- Workforce retraining at MSOE
- CCEFP has provided a foundation in universities
- NFPA/CCEFP has strong consortium of industries in manufacturing and transportation
- Focus is on jobs

Future activities

- How do we position fluid power industry?
 - Leverage recent work on Energy study and CCEFP
 - Have industry define what they want and need from an institute
 - Industry needs to engage DOE and other key agencies
 - Standards (NIST), Efficiency (DOE), Workforce (Dept. of Commerce)
 - ORNL is interested in helping facilitate this interaction
 - ORNL has discussed fluid power study with DOE EERE (Danielson)
 - ORNL helped facilitate a discussion between DOE EERE and NFPA.
- What's next (beyond NNMI)?
 - Establish an MOU between NFPA/CCEFP and DOE
 - Have industry engage DOE/NIST/Dept. of Commerce
 - What are high value problems
 - Potential for workforce development

Initiate program in energy efficient fluid power that includes roadmap for the U.S.P. R&D and Best Practices

Presentation_name

Presentation_name

Discussion

Lonnie Love lovelj@ornl.gov (865)576-4630

