Fluid Power Journal

Air Teaser: Calculate a Spud Gun’s Velocity

By Erine Parker, CFPAI, CFPSD, CFPS, CFPMM, CFPMT, CFPMIP, CFPMMH, CFPMIH, CFPE.

Many people enjoy using a safe spud gun. Shooting a potato at 100 psi can be highly entertaining. However, using compressed air to propel something is sometimes frowned upon. Then the challenge becomes to build a vacuum ping pong gun that doesn’t use an air compressor, like this:

Take a 10-foot PVC schedule 40 1.5-inch pipe with an ID of 1.59 inches. Use a ping pong ball with a diameter of 1.57 inches. Add a Y or a T connection at one end to attach a vacuum pump. Place a piece of mylar over both ends with a female coupler to hold it in place after putting the ball in the pipe. Attach a strong vacuum pump to the branch and pull a vacuum while aiming upward and away from any object or person. Treat it as a loaded rifle. Twenty-six inches of mercury will blow the ball out of the far end of the barrel when you puncture the mylar on the back end, but that’s not impressive. Lower the vacuum to 27 inches of mercury and it is much better. But at 28 inches or higher, the results are unbelievable. 

Here is your problem: calculate the velocity of the ball leaving the barrel before it hits the atmosphere in meters or feet per second, and mph or kph.

Given: Ball weight 2.7 grams

Barrel is 10 feet long

Vacuum is 28 inches of mercury (Hg)

See the Solution

Share this information.

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Sponsor

Sponsors

Get Our Enews!

Sign up for the FPJ Insider Guide

Sign up to receive fluid power industry news, economic updates, professional development content, and product news delivered right to your inbox.

We will never share your data with a third party without your permission. Adjust your email preferences at any time, and unsubscribing is quick and easy.

Fluid Power Journal Resources