SMC Corp. of America, a supplier of factory automation components, has been working with manufacturers for nearly a decade to reduce their compressed air costs. The program’s goals are to assist customers with resource conservation efforts, raise awareness of available energy-saving measures, and develop products suitable for reducing compressed air costs while increasing productivity.
The company offers an extensive list of products designed to reduce energy consumption and lower the cost of ownership of automated machinery. These products can be applied at the Original Equipment Manufacturer (OEM) level, as well as retrofitted to existing machinery. The following general guidelines should be observed:
• Near the air inlet, there should be an identification plate showing
• If an air-quality standard for water content (pressure dew point) is called for, that qualifier should be noted on the identification plate, as well.
• The machine should be designed to operate with an air pressure as low as reasonable.
• Verify that the end user will have the compressed air capacity available to operate properly.
• If there are limited applications within the machine that require a higher pressure, consider the use of a booster to supply flow to just those locations.
• The operating program should include measures that will automatically shut off the inlet air during prolonged downtime.
• A 3-port shut-off valve with lock-out/tag-out should be included to remove inlet pressure during maintenance or extended downtime.
• A water-removal filter should be included to remove any water that might be present in the air lines.
• Inlet air filters should
• Pressure regulators should be tamper resistant to avoid inappropriate changes.
• If air pressures will need to be changed often, use an electro-pneumatic regulator controlled by the machine’s PLC.
• A final safety valve should include a combination E-stop, quick exhaust, soft start, and a second lock-out/tag-out.
• If shutdown redundancy per ISO 13849-1 is required, consider a Category 3 and Category 4 safety shut-off valve.
• If the compressed air is lubricated, a re-classifier can be included to capture and contain the entrained oil rather than exhausting it to the work area.
• Install an ALDS (Automatic Leak Detection System) that will cycle through the pneumatic system during downtime, measuring and recording any air leaks found at the component level.
OR
• Install flow meters and pressure switches at the air inlet to measure and record air usage.
OR
• At minimum, flow meters and pressure switches should be installed on start-up to document initial air usage. Those start-up numbers can be compared with later measurements of air usage to determine if machine efficiencies have degraded over time.
• Venturi-style vacuum ejectors can be employed in non-continuous applications, but they should include the following:
Any program designed to reduce compressed air consumption has to work at all levels. Training needs to address awareness and promote a cultural shift from “production at all costs” to “let’s reduce our production costs.” Existing machines need to be evaluated and improved so that operating costs are kept in check. New machines need to be designed and specified with not only productivity goals, but also energy targets in mind. Total cost of ownership, sustainability, reliability, and productivity all need to be defined whenever machines are put into production.
About the Author: Jon Jensen, CFPPS, CFPECS, CFPAI, is the Energy Conservation Group manager for SMC Corp. of America, a past president of IFPS, and the chair of the Curriculum Committee for the Energy Efficient Hydraulics and Pneumatics Conference (now the Fluid Power Systems Conference). Prior to managing the Energy Conservation Group, Jon served for nearly 10 years as SMC’s North American training manager. He can be reached at jjensen@smcusa.com.
Reinforce your industry expertise with a Pneumatic Mechanic, Technician, or Specialist certification. Apply online at www.ifps.org.